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Large sets of coupled, nonlinear equations arise in a number of disciplines in connection 
with computer-based models of physical, social, and economic processes. Solutions for 
such large systems of equations must be effected by means of digital computers using 
appropriately designed codes. This paper addresses itself to the critically important problem 
of how sensitive the solutions are to variations of, or inherent uncertainties in, the parameters 
of the equation set. We review here, and also present further developments of, our statistical 
method of sensitivity analysis. The sensitivity analysis presented here is nonlinear and thus 
permits one to study the effects of large deviations from the nominal parameter values. In 
addition, since all parameters are varied simultaneously, one can explore regions of para- 
meter space where several parameters deviate simultaneously from their nominal values. We 
develop here the theory of our method of sensitivity analysis, then detail the method of 
implementation, and finally present examples of its use. 

1. INTRODUCTION 

Sets of coupled, nonlinear equations arise in a number of disciplines in connection 
with computer-based models of physical, social, and economic processes. These sets 
of equations may be differential, integral, or algebraic. They arise in such widely 
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different fields as reaction kinetics, combustion, air pollution, weather forecasting, 
upper atmosphere phenomena, seismic analysis, operations research, systems analysis, 
economics, etc. These model systems may contain as many as 100 equations, a very 
large number of parameters (in the form of coupling coefficients such as rate coeffi- 
cients, transport coefficients, economic coefficients, etc.) and a very large number of 
output variables. Solutions for such large systems of equations must be effected by 
means of digital computers using appropriately designed codes. 

As is well known the computer solution of such large sets of equations can be quite 
expensive. Even after such solutions have been achieved one is still faced with a critically 
important problem: How sensitive is the solution to variations of, or inherent uncertain- 
ties in, the parameters of the equation set? This problem of “sensitivity” is central to 
the understanding of the behavior of systems, and of the models representing such 
systems, which contain a large set of coupled equations. It is clearly important to 
know how sensitive the output variables are to changes of, or uncertainties in, the 
parameters, and which of the variables are sensitive (or not sensitive) to which of the 
parameters. Until this information is available, any proposed model must be suspect 
as a valid representation of the real system. Furthermore, the accuracy to which the 
model parameters, i.e., coupling coefficients, need to be determined via calculation 
or experiment depends upon the sensitivity of the output variables to the value of the 
parameters. And finally, any desired optimization of various output variables with 
respect to the coupling coefficients requires a knowledge of the sensitivity. 

Any attempt to determine the “sensitivity” by solving the set of equations over 
and over again, varying one parameter at a time over a series of values while holding 
all the other parameters fixed at some specific values becomes prohibitive in time 
and expense for the large systems discussed here. This is readily demonstrated by a 
simple calculation. For a model system of many coupled differential equations with 
n parameters and m output variables, the above procedure for z different values for 
each of the parameters would require zn integrations for each of the m variables, i.e. 
a total of mz” integrations. For m, z, and n large, not only would the computations be 
prohibitively expensive, but the printouts would be so numerous that the analysis of 
the results themselves would be a major problem. 

In response to this need, we have developed a statistical method for the sensitivity 
analysis of large systems of coupled nonlinear equations. The theory [ 11, its application 
to several test kinetics systems [2], and an analysis of the approximations [3] have al- 
ready been presented and the reader is referred to these publications for various details 
which may not be covered in this paper. 

The purpose of this article is to recast and further develop our method of sensitivity 
analysis into a form which has a number of advantages over the previous formulation 
[l-3]. This new formulation permits us to discuss sensitivity analysis from a more 
familiar and direct point of view. A further advantage is that the relation to more 
conventional sensitivity analysis is now easily obtained. Finally, this article is user 
oriented. We present here all the steps required for the readers to apply this method 
of sensitivity analysis to their own systems. 

It is very important to point out here that the implementation of our method of sensiti- 
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FIG. 1. Definition of terms for simulation models. 

vity analysis is very simple even though the theoretical analysis presented here appears 
to be quite involved. We will demonstrate this in Sections 3 and 4 where we discuss 
the implementation of the method and present a specific example. 

A mathematical model of a physical system is a programmed computer algorithm 
which returns a prediction y ( y may be a vector )for any physically realizable values 
of the parameters k and constants C, and over any physically meaningful range of 
values of the independent variables X. Such a model may return nonsense for certain 
combinations of values of parameters and independent variables; but we assume that 
usual theory vs experiment checks have already been carried out on the model, so that 
gross deficiencies are not evidentI. 

A model typically is characterized or controlled by “parameters,” as shown in 
Fig. I. In the abstract, we might regard these parameters as being a subset of the 
independent variables except for a very important distinction. The true independent 
variables always cover a range of values (possibly infinite) during a single run of the 
model. The simplest example of such an independent variable is time in dynamic 
processes, but space and many other variables could be independent in specific 
problems. The parameters. on the hand, have unique values during the course of a 

’ Clearly, if these conditions are not met, there is a problem at a level more basic than that which 
calls for a sensitivity analysis. We might mention that our experience has shown that computer 
algorithms frequently have been checked out only for a limited number of specific parameters values, 
and not over the broader range of values for which the model presumably is valid. In order to apply 
the sensitivity method discussed here (or any other method of sensitivity analysis), it is necessary 
to “tune” the algorithm to cover the broad range of values which the mode1 is presumed to represent. 
In unfavorable circumstances, this may require more work than the sensitivity analysis itself. 
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single “run” of the model, although it may be necessary to vary these values from 
one run to the next. The need for such variation may arise from any of several possible 
sources, several of which are indicated in Fig. 1. For example, a “physical” parameter 
certainly has a unique value, but this exact value may not be known because of 
limitations of informations; only a range or distribution of values may be known. 
As another example, a parameter may be controllable in a particular physical circum- 
stance only to within some range, e.g., the impedance of a variable element of an 
electronic circuit, or the mass loading of a spring in a mechanical system. 

Separate also in definition from the independent variables and parameters are the 
fixed constants of the model, which do not vary within the context of the class of 
problems of interest to the model user, and whose values can be precisely specified. 
It should be noted, of course, that what is a fixed constant in the context of one situation 
might be a parameter in the context of another situation; the distinction depends on 
the particular case on hand. 

The fact that the parameters can take on a range of values suggests that a statistical 
approach to sensitivity analysis is appropriate. Instead of considering the effect on 
the output functions of one-at-a-time variations in each of the parameters as in a 
“brute force” method, we will construct outputs averaged in one operation over 
probability distributions of all the parameters. The distribution of the parameters can 
arise because of experimental uncertainties or theoretical approximations, because of 
“ignorance” of the value within certain reasonable bounds, or might represent upper 
and lower limits due to “stops” on the physical controls of the systems being modeled. 

Our method of sensitivity analysis proceeds by relating the probability distribution 
of each parameter to a frequency and one new parameter s which, as s varies, carries 
all the parameters through their range of variation .The parameter s is varied, and 
the frequencies are chosen in such a way that the output variables at any fixed time 
become periodic in s. 

The output variables can then be Fourier analyzed. As we shall show below, the 
Fourier coefficients represent an average of the output variables over the uncertainties 
of all the parameters. A unique correspondence between the Fourier coefficients for 
the frequency wL and all its harmonics and the sensitivity of the output variables to 
the Zth parameter is established. We compress all this information into partial variances 
Sal which are the normalized sums of the squares of the Fourier coefficients of the 
fundamental frequency wL and all its harmonics. If SW, < Swj for a given output 
variable, then this output variable is less sensitive to the Ith parameter than to the 
jth parameter. Thus, the partial variances measure the average sensitivity of an 
output function to the variation (or uncertainty) of a particular parameter. This 
average is over the range of uncertainties of all the parameters, with their appropriate 
probability distributions, with the exception of the parameter being considered. For 
this parameter, the statistical property calculated is the variance. 

The sensitivity analysis presented here is nonlinear so that it permits us to examine 
large deviations from the nominal parameter values. In addition, since all parameters 
are varied simultaneously, one explores regions of parameter space where more than 
one parameter is far from its nominal value. Because of this thorough and systematic 
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exploration of the parameter space, it often turns out (see, e.g., the example of Section 
4) that sensitivities of an unexpected nature are revealed. A careful study of the model 
will then reveal some complex coupling between variables, unexpected prior to the 
analysis, which leads to the observed sensitivity. In this fashion, one obtains deeper 
insights into the structure of the complex system being studied. Another frequent and 
important finding is that a number of sensitivity coefficients corresponding to a large 
set of parameters turn out to be negligible. This permits one to reduce the complexity 
of the set of model equations and focus one’s attention on a greatly reduced set of 
equations. The application that we present in Section 4 will exhibit this feature. 

The body of this paper is organized into four sections. In Section 2 we develop 
the theory of our method of sensitivity analysis. Section 3 details the implementation 
of the method and in Section 4 we present an example of its use to date. In Section 5 
we list a number of unsolved problems on which further research would be most useful. 

As previously mentioned, the implementation of the method is possible without 
a knowledge of the details of the analytic development. Readers primarily interested 
in the application of sensitivity analysis to some specific problems can bypass Section 2 
and go directly to Section 3. The example of Section 4 will serve to show the capability 
and range of applicability of the method. 

The analytic development of Section 2 is divided into several subsections which 
correspond to the separate steps that make up the sensitivity analysis. We first intro- 
duce the parameter uncertainties (or variations) together with a search curve procedure 
for exploring the values of the output function at different points in parameter space. 
The path of the search curve, parameterized by a search variable s, is closed on itself 
in the parameter space so that the output function is periodic in the search variable 
and can be Fourier analyzed. Since the search curve is closed it cannot cover all 
points in parameter space. The interpretation of the Fourier coefficients as measures 
of sensitivity is exact only if the search curve covers all the parameter space. To 
explore this error, we introduce another space, “B-space,” which has the samedimension 
as the parameter space, and find that the error can be estimated and controlled. 
Next we note that the Fourier coefficients must be evaluated numerically as finite 
sums and we take into account the errors introduced by this procedure. The Fourier 
coefficients are then combined in a well-defined prescription to yield the desired sensi- 
tivity coefficients and the precise meaning of these coefficients is detailed. This is 
followed by a discussion of our original procedure [l] and the relation of our non- 
linear sensitivity analysis to the linear types of sensitivity analysis usually employed 
in the past. 

2. FOURIER METHOD OF SENSITIVITY ANALYSIS 

A. Parameter Probability Distribution 

We assume that a mathematical model of the desired physical system has been 
constructed. For many problems the equation set takes the form 

df(t)/dt = F(f, k), f(t = 0) = f, ) (2.1) 
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where f is a vector of m output functions (fi , fi ,...,fJ at time t, k is a vector of n 
parameters (k, , k, ,..., k,) which couple the nonlinear equations represented by F, 
andf(t = 0) = Mo>,fi(%...,fm@>> is a vector of given initial conditions. We assume 
that this set of equations can be solved numerically for f(t) for any time t once f,, 
and k are specified. 

Now consider each of the parameters kl to range over a continuous set of values 
-co < k, < co. We write 

kz = g&L ---co < uz < +q 1 = 1, 2 )...) n, (2.2) 

where gl(ul) denotes some function of u1 . The variable u1 serves to vary the kt . 
In Refs. [l-3] we chose the particular form kl = ki”’ exp uz , with ki”’ the nominal 
value of the parameter, to permit a wide range of variation of k with U. The ur are now 
considered to be independent random variables with their respective probability 
densities P&r) such that Pr(ur) dul gives the probability that the random variable ur 
lies in the range (ur , uz + duJ. When the variables uz are not correlated, then the 
probability density P(u) is given the product of the P(uJ, i.e., 

JYU) = ii ~duz). (2.3) 
24 

By way of example, for many problems these densities P,(ur) will be more or less 
normally distributed with widths dependent on the dispersion of the values of the 
parameters kl around the nominal value ky’. 

We now introduce averages over these densities which, as we shall show, will lead 
to useful measures of sensitivity. The n-dimensional u-space average of a function f(u) 
is defined as 

(f(u)> = 1 duf(u) P(u). (2.4) 

The “brute force” method of sensitivity analysis corresponds to picking a grid 
of points in the u-space, evaluating the solution of the equation set (2.1) for the values 
of the parameters k(u) at these grid points, and examining how the output functions 
change with k(u). 

B. The Search Curve 

In our method we construct a search curve in the u-space which is a path in u-space 
parametized by the search variable s. The search curve is constructed so that the 
n-dimensional u-space average of the output function, Eq. (2.4) equals the one- 
dimensional s-space average. 

The translation of the probability density of the ur’s into s-space is made by the 
introduction of n transformation functions Gr (I = 1, 2,..., n) such that 

uz = G,(sin OJ~S). (2.5) 
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In these equations, the w1 are a set of incommensurate frequencies, with one 
frequency assigned arbitrarily to each component uz of the vector u. The set of 
equations (2.9, then, is a parametric representation of an n-dimensional curve in the 
space of the variable (ul , u2 ,..., u,). Variation of s over the range -co < s = + co 
generates a curve which traverses this n-dimensional parameter space infinitely often 
in each direction, but with a relative rate of traversal in each direction which is 
proportional to the frequency wr assigned to that direction. 

Within this broad statement, the detailed shape of the curve depends upon the 
specific functional forms chosen for the transformation functions G, . Inasmuch as we 
wish to obtain a specific distribution Pl(uJ in the Ith direction, it is necessary to 
choose CL so that the fraction of the total arc length of the curve which lies between 
the values uL and uL + duL is equal to PL(uE) du, . The conditions for this equivalence 
were deduced by Weyl [4] and in terms appropriate for a sensitivity analysis, derived 
in an earlier paper in this series [I]. It was found there that if Gl(xl) is taken to be 
the solution of 

n( I - x2)1/2 P,(G,) q = 1 (2.6) 

with the boundary condition G,(O) = 0, then the arc length along this curve is 
distributed in accordance with the previously stated requirement. This equation can 
be solved by quadrature for any distribution function PI . Thus, it is possible to 
construct a one-dimensional manifold which covers parameter space exactly in 
accordance with the requirements of the statistics. 

The curve generated by the set of equations (2.5) and (2.6) can be referred to as a 
“search curve.” As demonstrated by Weyl, the fact that the frequencies w1 are incom- 
mensurate guarantees that the curve is space-filling, by which we mean that it passes 
arbitrarily close to any preselected point in parameter space for which the joint 
distribution nySl Pz(u,) dul does not vanish. Thus, the search curve is an ideal sampler 
of parameter space, since it seeks out, in the sense just defined, each point in the space, 
and it fills the space with a relative density matched to the joint distribution of the 
parameters. 

The search curve just described is an ideal which cannot be numerically realized. 
It is clear that the frequencies wL which are used in the computational analysis cannot 
be incommensurate. Thus, we are limited to commensurate frequencies which must be 
chosen to mimic as closely as possible the above requirement of a space-filling curve. 
We shall, in the sections that follow, discuss the errors introduced by the use of 
commensurate frequencies. As in our earlier work [l-3] we develop the theory here 
for integer frequencies. The use of such frequencies leads to a search curve that cannot 
fill the space but yields a closed path in the u-space. The entire traversal of the u-space 
is then accomplished by letting the search parameter s range between 0 and 277. 

C. Fourier Coeficients 

The use of integer frequencies in the transformation functions, Eq. (2.9, implies 
that the uz’s are periodic in s on the interval (0, 27r). Since the output functionsfi are 



8 CUKIER, LEVINE, AND SHULER 

a function of s through the ul’s they are, as a function of s, periodic on (0, 2?r), i.e., 

j;:(s) =a 4 24. (2.7) 

The output functions can thus be Fourier analyzed to obtain their Fourier coefficients 

A(‘) 1 f 

277 

Jlu, = ; COS(PW>f,(~) ds 3 p = 0, l,...; 
0 

B(i) 1 
PO,, = ; I 

2n sin(pwls).f;(s) C/S, p= I,2 ).... 
0 

(2.8) 

In terms of an average over s-space, Eqs. (2.8) can be rewritten as 

&A& = (cos(Pw)h(~D, 
(2.9) 1*(i) T 3)WL = (sin(pw,s)f$(s)). 

The importance of the Fourier coeficients in Eqs. (2.8) is that of AzLs and Bzd, are 
zero for all p = 1, 2,..., then the ith output fi is insensitive to the values of the ith 
parameter kl . The Fourier coe#icients of the Ith fundamental and all harmonics of this 
lth fundamental measure the sensitivity of the output to the Ith parameter. These state- 
ments will be justified in the following section. 

The Fourier coefficients can be interpreted as sensitivity measures if we can show 
that the Fourier coefficients of a given fundamental and all its harmonics segregate 
the effects of each parameter uncertainty on the output functions. That is, if the 
Fourier coefficients ADwl and BDU1 (p = 0, I...) are affected by the uncertainty, i.e., 
range of variation, in the Ith parameter k, and are not affected by uncertainties in any 
of the other parameters, then these Fourier coefficients isolate, one by one, the 
uncertainties of the parameters k, on the outputs. For the integer frequencies that we 
use this is not strictly the case, but it is approximately true. It is only for incommensurate 
frequencies, i.e., those for which 

il rimi # 09 --oO < ri < +a, (2.10) 

with ri integer, that the segregation of sensitivity is exact. However, we shall show that 
the error made in the use of integer frequencies can be quantitatively predicted and 
controlled. We are therefore still able to use this very useful interpretation of the 
Fourier coefficients as measures of sensitivity. 

D. The O-Space 

In order to demonstrate the validity of this interpretation of the Fourier coefficients, 
it is necessary to visualize the search curve in an n-dimensional space which is different 
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from the u-space. Let us introduce an n-dimensional O-space with orthogonal axes 
8, ) 8, )...) 8, defined by 

8, = wps (mod 27r), I = 1) 2,.. .) Il. (2.11) 

In this n-dimensional space the search curve consists of a series of parallel lines with 
the separation between the lines determined by the choice of integers wI . As simple 
examples, consider the two different choices of integer frequencies 

Wl = 1, W? - - 2; (2.12a) 

w1 = 11, w2 = 13. (2.12b) 

The two-dimensional &space and the search curves for these frequency choices are 
shown in Fig. 2 and 3. 

It is intuitively clear that as the search curve does a better and better job of covering 
the O-space, an integral of a function over s-space can equally well be carried out as a 
multidimensional integral over O-space. The way to obtain a uniformly dense coverage 
of the e-space is to choose w1 and w2 to be incommensurate, that is choose w1 and wp 
such that 

rlwl + r++ 17 0, -co < rl, r2 < +a, (2.13) 

for any choices of the integers r1 and r2 [4]. Integer frequencies cannot be incommen- 
surate but by choosing o1 and wI? appropriately the values of rl and rp which lead 

FIG. 2. O-Space coverage with frequencies w1 = I, w$ = 2 and 100 quadrature points N. The 
lines are obtained from 8, = w,s (mod 24, 0 < s < 257, and the points from &, = wLs, (mod 277) 
with s, = 2sqlN; q = 1, 2 ,..., N. 
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FIG. 3. O-Space coverage with w1 =: 1 I, OJ? = 13, and N = 100 computed in the same fashion 
as in Fig. 1. 

to equality in Eq. (2.13) become very large. Jn the two examples we have chosen, 
r, = 2 and r2 = -1 lead to equality in Eq. (2.13) for the first choice of integer 
frequencies while rl = 13 and r2 = - 11 are required for the second choice of 
frequencies. Thus the latter frequency choice leads to a better coverage of the e-space 
as is evident from Fig. 2 and 3. 

So far we have focused on the search curve’s coverage of &space without reference 
to the function which is being integrated. The accuracy of replacing the s-space 
average by a e-space average not only depends on this coverage but also on the values 
of the integrand since we want to equate jf(s)P(s) ds with Jf(e) P(B) de. As an 
extreme example, if the function f(s) were constant as s ranged over (0, 2n), then 
one could equate the s- and B-space average without error for any choice of search 
curve. If f(s) is a slowly varying function of s, then it will also be a slowly varying 
function of 8 in e-space and the error in equating the s- and e-space integrations will 
be small for any choice of search curve. This error is likely to increase when f(s) 
and f(0) are rapidly varying functions over the ranges of s and 8. In equating s- and 
B-space averages one must therefore consider both the coverage of space by the search 
curve and the “smoothness” property of the output function f(s). 

E. Relation between s- and e-Space Averages 

Since the interpretation of the Fourier amplitudes as sensitivity coefficients will 
be made in e-space it is necessary to relate quantitatively the s- and a-space averages. 
This relation is obtained by expressing the output functionf(s) as a function of 0 and 
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noting that, by construction, f(B) is multiply periodic in 8 on (0, 2n). We may thus 
expand f(0) in a multiple Fourier series 

f(e) = 11 ... C c,,,,...,, exp[--i(Q, + O,r, + ... + e,r,)l 
Tl rs rll 

= 2 cr exp[--ie . r], --co<ri<+cO. 

The s-space Fourier coefficients defined in Eqs. (2.9) are a subset of all possible 
such coefficients, namely the subset corresponding to a fundamental frequency wz 
and all its harmonics po, (p = 2, 3,...). In e-space we need the corresponding Fourier 
coefficients for our sensitivity analysis. As discussed previously, these S- and &space 
coefficients are not equal because the search curve does not, for a closed path, cover 
the entire e-space. The difference between these Fourier amplitudes, i.e., 

& jozTj(s) eipwLs ds - (&I” j ... 1 def(e) exp[ipf?,] 

is the difference between an integral calculated with the search curve, a line through 
e-space, and an integral calculated over the entire O-space. Written as averages, 
this difference is 

(f(s) eiewzs) - (f(e) eiysz) = +(e) eiDez), (2.15) 

where E measure the relative error in equating the s- and e-space integrals. Equivalently, 
we can write 

C VW1 - cOOO...D~...000 = ~c000...D~...000, (2.16) 

where C, is the complex Fourier coefficient defined by 

Cj = *(Aj - iBj), 

C-j = C*j = $(Aj + iBj), 
(2.17) 

where A, , B, are defined by Eqs. (2.8) and where coo...9~...oo is defined in Eq. (2.14). 
In Ref. [3] and in Appendix 1 of this paper we show that by appropriate choices of 

frequencies oz , this error can be made as small as desired. Qualitatively, as the fre- 
quencies become more incommensurate the coverage of the e-space (and u-space) by 
the search curve improves and the error made in equating S- and e-space averages 
decreases. This can be quantified through the introduction of an index M which is the 
order of interference. Interferences arise when frequencies in the original set u can 
combine to form another frequency of the set. Thus, if we have three parameters 
with associated frequencies w1 , o2 , and wQ and if, for instance, w1 + ug = wQ, an 
interference has occurred. As M increases the interferences are postponed to higher 
and higher harmonics and the error decreases. 
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Assuming that E is negligible by appropriate choice of the set w, we then obtain 

c lmJl = cooo...9‘...ooo == c,, (2.18) 

as the desired equality of s- and O-space averages. The Fourier coefficient cooo.. .I,I...oUo 
reflects the sensitivity of the output function to the uncertainty of the Zth parameter 
(and only to the Ith parameter) since yi = 0 for all i # 1 in the o-space Fourier 
coefficient crlrz. ..T . If UN the Fourier coefficients coo...9 ,... ooo are zero for pL = 1, 2 ,..., 
then we can con&tde that the output function is not sensitive to the parameter k, . 
Since, by (2.18), the e-space Fourier coefficients cP1 equal the s-space coefficients 
c Pw1 , we conclude that C,, I is an appropriate measure of the sensitivity of the output 
to the Zth parameter. 

The conclusion that the Fourier coefficients CBUl measure just the sensitivity to kZ , 
can also be verified via an s-space analysis. The output as a function of s, f(s), is 
constructed by expressing each parameter ui as a periodic function of s with frequency 
Wf (i = 1, 2,..., n) as in Eq. (2.5). Thus,f(s) consists of a sum of terms which oscillate 
at all possible linear combinations of the n frequencies o. If we single out the frequency 
pwl via the Fourier coefficient CDwl , and if the frequencies are incommensurate, 
no linear combination of the other frequencies can add up to form CPU1 and interfere 
with the effect on the output from the Ith parameter kr . Since we do use integer 
frequencies, it is necessary to introduce the concept of order of interference M as 
defined in Eq. (Al.4). Thus, as long as we restrict our attention to Fourier coefficients 
C uwl for which there are no interferences, or for which the interferences have been 
“postponed,” the sensitivity is due entirely to the uncertainty in k, . 

F. Finite Fourier Coeficients 

In performing the Fourier analysis on the computer, the s-space integration must be 
approximated by a finite summation. This procedure introduces a further error into 
the method, which must be analyzed. It is important to minimize this error as efficiently 
as that due to interferences. The finite sums are obtained by taking points from the 
search curve in e-space. If we use a large number N of points for the summation we 
will obtain an excellent approximation to the s-space integral. However, if the order of 
interference M is low, the accuracy of the interpretation of the s-space average as a 
sensitivity measure is not good. For example, if we fix Nat 100, in the two-dimensional 
examples discussed in Section C above, the first search curve leads to the set of points 
shown in Fig. 2 while the second search curve leads to the set of points shown in 
Fig. 3. Even though the first search curve is better approximated by the IOO-point 
quadrature than the second one (since the density of points is higher for the first curve), 
the overall distribution of points in the second case is far more uniform. We therefore 
would obtain a more accurate sensitivity measure in the second case than in the first. 

The error introduced via the use of finite sums for the s-space integrations can 
be analyzed in much the same fashion as the interference problem. We denote 
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the numerical approximation to the exact Fourier coefficient C,,I by C&,, , where 

(2.19) 

with 
s, = 27rg/N, q = 1, 2 ,..., N. (2.20) 

Here N is the number of points used in the quadrature formula and S, (q = 1,2,..., N) 
labels the individual points which are chosen to be equalIy spaced along the search 
curve.2 Following the procedure used in Eq. (2.19, we now form the difference between 
the s-space quadrature C&, and the d-space average CP, to obtain 

C* Pa1 - CP, = c*c,, ) (2.21) 

where (see Eq. (2.18)) cSz z cOO,,...p,...OO,, . 
The coefficient E* in Eq. (2.21) is a measure of the error introduced by approximating 

the d-space integration as a finite sum at seIected points in s-space. These errors are 
in addition to those arising from interferences. The evaluation of E*, as a function 
of w, N, and the output function, is presented in Appendix 2. 

It is important to have a ready estimate of the error term when doing sensitivity 
analysis without becoming involved in long calculations for each particular case 
under investigation. In response to this need we have in Ref. [3] developed bounds 
on the error which depend on w, N, and the type of output functions being investigated. 
We present the salient ideas of this method in Appendix 3. 

G. Partial Variances 

The Fourier coefficients with which we have been concerned so far correspond to 
the fundamental and harmonics of each frequency w1 . They measure the sensitivity 
of an output to the variations in all the parameters such that if there is a sensitivity 
to the Zth parameter it will show up only in the Fourier coefficients CD,* (p = 1,. 2,...). 
The uncertainty in the other parameters is accounted for by averaging over their 
respective distributions. It is apparent that other Fourier coefficients contain additional 
information such as, for instance, the joint sensitivity to parameters kg and kg . From 
this point of view, we can consider the variation of the output arising from the 
uncertainties in all the parameters ki, i = 1, 2,..., n, and their couplings to be 
characterized by the variance of the output function 

c72 = (j-2) - (f)2. (2.22) 

The interpretation of this variance can be explored by expressing it in terms of the 

z The equal spacing is not necessary; however, the analysis and control of the error is facilitated 
by this choice. The use of other spacings may actually lessen the error. See, e.g., V. I. K.rylov and 
L. G. Kruglikova, “Handbook of Numerical Harmonic Analysis,” Israel Program for Scientific 
Translations, Ltd., Jerusalem, 1969. 
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s-space Fourier coefficients Cj (or the cosine and sine coefficients A, and Bj) by using 
the Fourier series expansion off(s) in Eq. (2.22). This yields 

cr2 = E Cj" = 9 f (Aj2 + q.2), 

j=-, j=l 

(2.23) 

where the prime on the sum excludes the j = 0 term. We recognize Eq. (2.23) as 
Parseval’s Theorem of Fourier analysis. However, we are calculating finite sums for 
the numerical Fourier coefficients Cj*(Aj*, B,*) and must therefore modify Parseval’s 
theorem to obtain the numerical variance u2*. This is just 

N/2 Nl2 
u2* = 

C’ CT” = 4 1 (A;’ + BT2) + i A;::, . 
j=-(N/2-1) j=l 

The variance cr2” is thus seen to be the sum of the squares of the Fourier coefficients 
of all integer frequencies which enter into an N point quadrature formula. 

We now construct the part of a2 that corresponds to the variance of the output 
arising from the Zth parameter uncertainty when the output is averaged over the 
uncertainties in all other parameters. To do this, we first integratef(k) andf2(k) over 
all uncertainties in the parameters with the exception of the Zth parameter. We then 
calculate the variance u1 for these partially integrated output functions using Eqs. 
(2.22) and (2.23). The details of this calculation will be found in Appendix IV. This 
result is then modified to yield the numerical variance OF* corresponding to the finite 
sums of Eq. (2.24). The ratio of this variance a;* to the total variance a2* (of Eq. (2.24) 
is denoted by S& and is the partial variance, i.e., 

SW*, ~ g = $g’N:;” (( $ 12. (2.25) 
9 (N/2 1) , 

The partial variance S& is the fraction of the variance of the output function due to the 
uncertainty in the parameter kt when the output function is averaged over the uncertain- 
ties, and coupling of uncertainties of all the other parameters ki , i # I. 

The partial variance can thus serve as an excellent measure of the sensitivity of 
the output to the uncertainty of the Zth parameter. It can be used to compare 
quantitatively sensitivities due to uncertainties in the different parameters ki , i = 1, 
2 ,--*, n, since all partial variances are computed relative to the total variance u2*. 
Clearly, the smaller the partial variance, the less the effect of the changes of k, on the 
output function. We can therefore order the S&‘s as a function of I to obtain an 
ordered list of sensitivities for a given output function and between different output 
functions. 

The partial variances SW”, will have the above interpretation only if the interferences 
and aliasing difficulties (see Appendix 2) are minimized by the proper choice of w 
and N. Since SW*, involves Fourier coefficients of high index, the appropriate values 
of w and N for the minimization of these errors unfortunately involve prohibitively 
large numbers of function evaluations. However, as discussed previously, the Fourier 
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coej?cients decrease in amplitude as their index increases. As a practical, computational 
matter, our experience has shown that only a few harmonics of a fundamental need 
be calculated before the amplitude becomes negligible. Thus, the relative errors in 
comparing the partial variances SW, * for different parameters kL are small even when 
only the Fourier amplitudes of the fundamental and the first few harmonics are 
utilized. 

Let us return briefly to the unstarred, i.e., analytic values of the variance u2 (Eq. 2.23) 
and the corresponding partial variances SW, given by 

(2.26) 

where the prime on the sums excludes the p = 0, j = 0 terms. Note that ur2 in the 
numerator involves only the sum of the squares of the Fourier coefficients of the 
fundamental and all harmonics of the Ith frequency wL while the variances u2 in the 
denominator is constructed as the sum of squares of the Fourier coefficients of all 
the integer frequencies. It is readily apparent from Eq. (2.26) and the development 
below that the sum CyCl SW, of the partial variances will not equal unity. Writing the 
variance a2 in terms of the &space Fourier coefficients according to Parseval’s theorem 
yields 

CT2 = f f .‘a ff j c(p, ,p2 )...) p,)l2, (2.27) 
?I, II2 %L 

where the prime indicates that the term with all pi’s equal to zero is omitted. It is 
suggestive to rearrange the sum in Eq. (2.27) into groups of terms where successively 
larger subgroups of the coefficients p1 , p2 ,..., pn are nonzero. We define 

uz 2 = ,z-I I 40 ,..., PI >“‘, W”, (2.28a) 
I 

Ufj = f 2 / C(O,..., J?l )..., ,Dj )...y O)I’, (2.28b) 

u;jt = f, ,g, p-fl 1 c(o,..., pl ,...,pj )...) Pk >.‘.f O>i2, (2.28c) 
t i k 

etc., so that 
n l-1 j-1 

(2.29) 

is written as a sum of terms with successively more complex contributions to the 
total variance u2. 

We have shown above the first term of the decomposition (2.29) corresponds to the 
part of total variance arising from the Zth parameter uncertainty when the output is 
averaged over the uncertainties in all other parameters. By the same methods 

581/26/1-2 
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one can also construct ~7:~ by integrating f(k) over all but the two parameters k, 
to obtainf(k, , k,) and then forming the variance C$ of this function via Eq. (2.22). 
One can proceed in an analogous fashion to generate the other, more complex, 
variances in Eq. (2.29). These higher partial variances are thus seen to contain in- 
creasingly more detailed information about the coupling of sensitivity among larger and 
larger groups of parameter uncertainties. 

In our own investigations to date we have not exploited these higher partial variances 
to obtain more detailed information about the sensitivity of our test systems but we 
hope to explore their properties in some subsequent studies. 

H. Fundamental Fourier Coejicients 

In the original formulation of sensitivity analysis [l-3], our efforts centered on the 
Fourier sine coefficients of the fundamental frequencies, the Bwz in our present notation 
As shown there, these Fourier coefficients can be expressed as u-space averages: 

where the average was taken over the u-space probability density 

P(u) = fi a&osh(ajui) 
j=l 

(2.31) 

with bell-shaped distributions whose widths are determined by the parameter aj . 
We have in these papers also explored various other probability densities. 

The Fourier coefficients Bw, are thus seen to be directly related to the rate of change 
of the output function with respect to the Ith parameter, averaged over the uncertainty 
in all the parameters. This appealing interpretation of the fundamentals does not 
yield as sharp a sensitivity measure as do the partial variances since the integrand of the 
average (af/au,) is not necessarily a positive function and consequently could 
erroneously indicate a small sensitivity by fortuitous cancellation in different regions 
of parameter space. The partial variances are not subject to this difficulty; if &+ is 
zero it is definitely due to lack of sensitivity of the output to the Ith parameter. 

I. Relation to Linear Sensitivity Analysis 

We discuss here the relationship of our nonlinear method of sensitivity analysis to 
the more usual methods of linear sensitivity analysis. In the linear methods one 
computes, one way or another, the derivatives ~c/~u,~,,, for I = 1,2,..., n. The 
validity of this procedure must certainly be suspect for output functions which 
deviate significantly from linearity in the uncertainties in one or more of the para- 
meters. It is thus clearly of interest to investigate the conditions under which our 
Fourier amplitude analysis reduces to the linear analysis. 
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To demonstrate this relationship, we express the average 

<f(x)> = J ... J ~XP(X)f(X) (2.32) 

of a function f(x) in terms of the Taylor series expansion of f(x). The multivariate 
probability distribution function p(x) can be written formally as 

(2.33) 

where W)(xJ is the pLi-th derivative of the Dirac delta function with respect to its 
argument, 

and where 

(2.34) 

are the multivariate moments of p(x). Using this expression for p(x) in Eq. (2.32) 
yields 

(2.35) 

This is the desired relationship between the average of a function of a set of variables 
and the coefficients of the Taylor series expansion of the function. 

This analysis is readily applicable to the probability distributions and output 
functions discussed in the previous sections. Let us choose, for instance, the probability 
density 

P(U) = ii UjlCOsh(UjU,j) 
j=l 

of Eq. (2.31) with moments 

(2.36) 

where Ex is the Euler number of index K. The output function in u-space which we 
will consider is 

f(u) = 2 WC”) 
01 84 

(2.37) 
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since, by Eq. (2.30), the average of this function with the probability density P(u) 
of Eq. (2.31) yields the Fourier coefficient &, , i.e., 

$ (9) = Bw, 

with 

(2.38) 

(2.39) 

Substitution of Eq. (2.39) into (2.38) then leads to the desired result 

B 
*‘I (2.40) 

where the prime on the TV sum excludes the p1 = p2 = ... = p = 0 term. 
In order for linear sensitivity analysis to be valid, the higher-order terms of Eq. 

(2.40) must be small compared to the first, i.e., the linear term. These higher-order 
terms will be small only if the output function is essentially hnear in the uncertainties 
of all the parameters. The validity of a linear sensitivity analysis can therefore not be 
established until some evaluation or estimation of these higher-order terms has been 
carried out. Our Fourier amplitudes, as shown in Eq. (2.40), do include the effects 
of the higher-order terms and therefore represent nonlinear sensitivity measures. 

The results of this section can easily be transcribed to show that the partial variances, 
SwL , as defined in Eqs. (2.25) and (2.26), are also nonlinear sensitivity measures which 
include the effects of the higher terms of the expansion (2.40). This is readily evident 
from the definition of the variances u2 and uL2 in terms of the Fourier amplitudes, 
Eqs. (2.23) and (A4.2). 

3. IMPLEMENTATION 

The sensitivity coefficients are given by sums of the solutions of the equation set 
at selected points in the uncertainty space. From the point of view of computation, 
all that is required is the solutions of the equation set for different combinations of the 
parameters (k,, k, ,..., k,). The analysis of Section 2 shows which combinations of 
solutions to sum and interprets the sum as a sensitivity coefficient. 

The parameters are varied simultaneously by relating them to a search variable s 
and a frequency set w = (wr , CL+ ,..., w,) as given in Eqs. (2.2) and (2.5), i.e., 

kt = gJG@in w)l (I = 1, 2 )...) n). (3.1) 

The frequency wL and transformation functions G1 are chosen such that the path in 
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k-space induced by varying s traverses k-space in accordance with the probability 
density P$(uJ representing the uncertainty in each parameter k, . As long as k- and 
s-space averages are properly connected, sensitivity coefficients can be calculated as 
s-space, i.e., one-dimensional, quadratures. 

The appropriate s-space averages to calculate are the s-space Fourier coefficients 
defined in Eq. (2.8). The analysis of Section 2 demonstrates that the combination of 
Fourier coefficients which we call the partial variances 

(3.2) 

measures the sensitivity of the ith variable to the uncertainty in the Ith parameter. 
The sensitivity coeficient Szi is that fraction of the variance of the ith output which 
arises from the uncertainty in the lth parameter when the output is averaged over the 
uncertainties in all other parameters (cf. Section 2G). 

The Fourier coefficients can be calculated if solutions of the equation set (2.1) 
are known for values of k prescribed by the transformation functions Gr and fre- 
quencies w. Since we assume that the reader has available a method of solution of the 
equation set, all that need be done to obtain the sensitivity coefficient is to “add” the 
solutions according to Eq. (3.2). 

Implementation of the above scheme on a computer requires certain compromises 
which lead to approximations to the sensitivity coefficients. We have shown in 
Section 2 that these approximations are controllable; here we investigate their impact 
on the numerical calculation of the sensitivity coefficients. 

In brief, we are replacing a multidimensional integral over the uncertainty space 
(the k-space) by a quadrature formula which is a sum over N points in k-space. The 
quadrature requirements fall loosely into three areas: (1) use of integer frequencies w; 
(2) use of a finite number of points N; (3) the choice of frequencies w. We now discuss 
these issues in turn. 

A. Integer Frequencies 

If the search curve is to come arbitrarily close to every point in k-space, the fre- 
quencies 52, that define this curve must be incommensurate: 

i riQi # 0 (ri’s integer). (3.3) 
i=l 

A consequence of this condition is that at most one of the frequencies can be 
rational, with all others being irrational. But a computer can only represent an 
irrational number approximately. Of course, the difference between the irrational and 
its rational approximation can be made smaller and smaller by resorting to representa- 
tions of successively higher precision. But eventually, one will run out of computer 
memory, so that there is a real limit to the accuracy of the representation, 

Once we accept the limitations of rational approximation of irrational numbers, 
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we realize that the frequency set as represented on the computer cannot be truly 
irrational. It therefore becomes necessary to define a sequence of approximations to 
incommensurability. This was done in the previous papers [l-3] as follows. 

A set of rational numbers sZi (i = 1, 2,..., n) is approximately incommensurate to 
order M if 

for 

with M an integer at our disposal. It should be clear from this definition that in- 
commensurability corresponds to M + co. 

Henceforth we assume that the frequencies are approximately incommensurate 
to order M. 

If we are now dealing with rational numbers we may as well take them to be integers. 
The correspondence between the rationals Q, and integers wI is simple to establish 
with the introduction of wL , the least-common-integer multiple: wL is defined as the 
smallest integer such that 

are integers for all 1. 

WI = wJ2, (1 = 1, 2,..., n) (3.5) 

The search curve with o integer, Eq. (3.1), is a closed curve in k-space since for s 
outside the range (-V, x), uz must repeat a value from the range (-n, n). 

The tom1 arc length of the closed search curve defined above will increase with 
increasing M, the order of incommensurability. Thus, Eq. (3.4) serves to define a 
sequence of approximate search curves which successively become more nearly space 
filling as M + co. 

We must balance the increased accuracy which one obtains by using a longer search 
curve against the increasing computation time required to evaluate the output functions 
for more of the k-space. 

B. Discrete Sampling 

The search curve given in Eq. (3.1) does not yet completely fix a sample of para- 
meter space which can be utilized in real problems because the number of points on 
the search curve is uncountably infinite. We must select a finite subset of these points 
in constructing an actual sample. Such a selection might be made in many possible 
ways. The simplest choice, and the only one we have investigated to date, is to take 
a set of points uniformly spaced along the closed search curve. We require that one of 
these points lies at s = 0, since s = 0 is that point for which all parameters kl take 
on their nominal values k1”. 

The minimum number of points we must take in our sample can be related to the 
maximum frequency wmax of the frequency set. This relation can be derived by 
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appeal to Nyquist’s criterion for the evaluation of Fourier coefficients [15]. We want 
to evaluate all complex Fourier coefficients Cj for the frequency range 

0 < ljl <2w,,,. (3.6) 

There is a total of 4wm,, + 1 such coefficients. By Nyquist’s criterion, at least 
4wm,, + 1 points must be taken on the search curve in order to be able to evaluate 
this number of coefficients. 

It also is convenient to let the number of points be even. We therefore let N = 2r 
(>4wmax + 2) be the number of uniformly spaced sample points along the search 
curve, and define 

Sj = 7T(j - r)/r (j = 1, 2 ,..., 2r). (3.7) 

Furthermore, if we choose the frequencies wi to be odd integers it is easy to show 
(Appendix 5) that the output function, as a function of S, exhibits the symmetries 

f(77/2 + s) = f(742 - s), 

f(-77/2 - s) = f(-Tr/2 + s), 
(3.8) 

so that the search variable’s range may be restricted to -rr/2 < s < 7r/2. Thus, it is 
sufficient to evaluate f(sJ only for those s, which satisfy 

-712 < sj < ?7/2. (3.9) 

The number of points which satisfy this criterion is r instead of 2r.3 If we choose 2r to 
be of the form 4q + 2 with q integer, i.e., divisible by 2 but not by 4, then Eq. (3.7) 
can be modified to 

s, = 4.i - 4 
3 r ’ 

or, more conveniently, 

j= -, rfl r+3 3r 
- 3 - 

-j-- 2 ___ 3r 1 2 ,..-, 3 2 ; (3.10) 

s =z 21-r-l 1 
r 

! 2 1 ’ I = 1, 2 ,..., r. (3.11) 

Aside from a lower limiting value,4 r 3 2w max + 1, fixed by the Nyquist criterion, 
r can be assigned any value. However, large values of r are numerically desirable for 
reasons of accuracy, although smaller values are desirable for reasons of computing 
economy. To date, in practical applications we have tended to allow considerations 
of economy to prevail, and we usually have chosen r = 2wmax + 1. 

s In Refs. [l-3], this symmetry was not invoked, so that the number of sample points listed in 
these papers are all too large by a factor of two. 

4 In Ref. [l], it is indicated that by appropriately choosing the frequency set wI it is possible to 
use a slightly smaller lower limit value for r, c = 2w,,, - 7. The practical difference between these 
two limits is small, and we prefer to use the larger value for purposes of discussion. In actual cal- 
culations, we have used both values. 
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It is important to realize that a more accurate evaluation of the Fourier coefficients, 
made possible by choosing r to be large, may not result in improved accuracy for the 
sensitivity coefficients. For, if the search curve does not do an adequate job of covering 
the parameter space, then increasing the accuracy of the s-space integration will not 
improve the coverage of the parameter space. Thus, in addition to ensuring that r is 
sufficiently large to obtain an accurate s-space quadrature, we must also investigate 
how to obtain an s-space curve which does a good job of covering the entire parameter 
space. 

C. Selection of Frequency Set 

An adequate coverage of the parameter space is ensured by an appropriate choice 
of the integer frequencies wi and the number of point 2r. Criteria for such a choice 
were discussed in Refs. [I, 21 and sets of W, N (N = 2r) generated according to 
these criteria are presented there. Note that once a set has been constructed for n 
parameters, this same set can be used in all n parameter problems; i.e., frequency sets 
can be tabulated once and for all. 

For a given choice of frequency set w and number of points 2r we obtain an ap- 
proximate sensitivity coefficient which we designate by an asterisk. Thus, we can write 

Al* = 4 + q(w, 24, (3.12) 

where Al is ths true Fourier coefficient, A,* the calculated Fourier coefficient, and E 
the error, which depends on w, 2r, and the index Z of the coefficient to be calculated. 

The analysis of Ref. [3] and parts of Section 2 of this paper address the difficult 
problem of how to determine what the error is under given circumstances and how to 
minimize this error by properly choosing 2r and w. For the purpose of presentation 
of this implementation, we assume that the error has been made sufficiently small to 
carry out a meaningful sensitivity analysis. 

D. Working Equations 

The symmetries exhibited in Eq. (3.8) simplify the computation of the numerical 
Fourier coefficients. If we recall that the total number of points 2r is chosen as 4q + 2 
with q an integer, the use of these symmetries leads to (see Appendix 6) 

Al* = 0 (I odd), (3.13a) 

BL* = 0 (1 even), (3.13b) 

At* = (% + 11-l fo + i (,h + f-J cos &) (I even), (3.13c) 
j-1 

&* = (2q + I)-’ i (fi - &) sin &) 
j-1 

(1 odd), (3.13d) 

where we have setf(.rJ z f, . These formulas generate q + 1 unique cosine coefficients 
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and q unique sine coefficients. They form the working formulas of our method, 
whereby we use the sample values fj for -q < j < q to generate the Fourier 
coefficients. 

We might particularly note that Eq. (3.13~) gives, for I = 0, 

A,* = (2q + 1)-l i f; 
j=-q 

(3.14) 

identifying A,,* as the mean value off(s). The variance offis generated by the formula 

uf2 = (2q + 1)-l f (jj - Ao*>“. 
j=-g 

(3.15) 

It is worth pointing out that in any practical calculations, the amount of computing 
needed for evaluating Fourier coefficients is a very small part of the total computing. 
No significant benefit is thus gained by attempting to introduce methods such as fast 
Fourier transforms (FFT) into the analysis. There would in fact appear to be dis- 
advantages in using FFT in this application, since FFT works best when the numbers 
of sample points is highly composite, e.g., a number of the form of 2”, whose n is 
some integer, whereas our analysis gains in simplicity when the number of points is 
not highly composite. 

E. A Useful Modification 

Under certain circumstances, partial information may be available concerning the 
dependence of an output function upon one or more of the parameters. It may be 
possible to use this information to improve the numerical accuracy of the computation 
of the partial variances. By way of example, suppose we knew that a particular 
output function f was an even function of a particular parameter, say k, , i.e., 
f( -k,) = f(k,). In such a case it is easy to establish that the Fourier fundamental 
of frequency w1 , and all odd harmonics, vanish identically. However, even harmonics 
would not in general vanish. If we were to compute on the basis discussed previously, 
half of the terms contributing to the partial sensitivity would vanish, including the 
fundamental, for which we might otherwise expect higher numerical accuracy than 
for the even harmonics. 

To circumvent this loss of accuracy, we can utilize the following trick. We define a 
new parameter k,’ by 

kl’ = k12 (3.16) 

with a distribution function P,‘(k,‘) related to P,(k,) by 

dk, p,‘(k,‘) = PAW dkl’ = ~,((k’Y2) 
2(k1’)‘12 ’ 

We then utilize k,’ and P,‘(k,‘), instead of k, and Pl(kl), to determine G, by Eq. (2.6). 
Finally, k,’ instead of k, is related to s via Eq. (3.1). 
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With this modification, the fundamental Fourier coefficient Bw, , and in general 
all of the harmonic coefficients do not vanish, and we can expect a more accurate 
evaluation of the partial variance. 

In a more general vein, suppose we have a priori knowledge, or suppose we have 
qualitative reason to believe, that the output function f depends upon k, via an 
explicit function of k, . This is to say, suppose f(kJ is actually of the form F(h(k,)), 
with hfk,) explicit. Then it is best to proceed by defining 

k,’ = WA (3.18) 
dk, Pdk) P,‘(k’,) = P,(k,) dk,’ = - = Pl [WWl 

h’(h) h’[h-l(k,‘)] ’ 
(3.18) 

Next utilize P,‘(k,‘) to determine G, by Eq. (2.6), and relate k,’ to s by Eq. (3.1). 
After this, proceed along the lines previously discussed. The use of these modifications 
can be expected to improve the numerical accuracy of the sensitivity analysis. 

4. APPLICATIONS 

To iliustrate the application of our sensitivity analysis method, we present in this 
section three different examples. For two of these we provide references to other 
sources. The other application, to chemical lasers, we discuss in some detail. The 
three applications are: 

A. A chemical laser model, 
B. A chemical reaction model, 
C. An economic model. 

The first and second examples deal with models described by ordinary differential 
equations. The third application involves linear programming. Our ability to achieve 
a successful sensitivity analysis for such different types of model equations demon- 
strates the wide applicability of our technique of sensitivity analysis. 

One important feature should be noted which pervades the analysis of all these 
examples. A study of the sensitivity coefficients reveals unexpected but significant 
relations between parameters and output functions which could not have been 
predicted from a more conventional analysis or a purely intuitive approach. Sensitivity 
analysis thus provides information which can lead to important insights into the 
structure of the models used to represent complex systems. 

A. A Chemical Laser Model [9] 

The hydrogen fluoride chemical laser is a chemical system consisting initially of a 
mixture of molecular hydrogen, H, , molecular fluorine, F, , and an inert diluent, e.g., 
argon. At time t = 0 flash-lamp irradiation dissociates some of the F, into F atoms. 
Chain reactions then begin which lead to the conversion of the hydrogen and 



NONLINEAR SENSITIVITY ANALYSIS 25 

fluorine into hydrogen fluoride, HF. Because of the high chemical energy release 
the HF molecules produced are in comparatively high vibrational quantum states. 
If the system is placed between two mirrors, the vibrational decay will lead to lasing 
action on the infrared vibration-rotation transitions of the HF molecule. Theoretical 
descriptions of the system have been provided by various authors [IO-121. We have 
performed a sensitivity analysis on the model of Kerber et al. [lo]. 

The model studied describes the chemical evolution of the system in terms of a set 
of 68 reversible chemical reactions between the following species: H atoms, Ar atoms, F 
atoms, H,(o) molecules, F, molecules, HF(v’) molecules, where v and v’ indicate the 
vibrational quantum states of H, and HF, respectively. The model considers the 
ranges of values 0 < v < 2 and 0 < v ’ < 8, so that a total of 16 chemical species 
are considered. The system is assumed to be spatially homogeneous. Over time scales 
of interest it operates adiabatically and at constant volume. Because of the chemical 
energy release the temperature is not constant. Except for the Ar atoms, whose number 
is constant in time, the other 15 chemical species have concentrations which vary in 
time. Including the temperature variation, the system is described by 16 coupled 
time-dependent equations, the temperature equation being derived from considera- 
tions of energy conservation. For the temperature and for the masses (or number of 
moles) of all species except HF(v’) the time-dependent equation is an ordinary dif- 
ferential equation. The equations for the HF(v’) molecules are one of two alternate 
forms. If lasing is not taking place on any transition involving the vibrational level v’, 
then the equation for that level is an ordinary differential equation, namely an equation 
of chemical evolution. If lasing is occurring which involves the vibrational level C’ 
and an adjacent level v’ & 1, then an algebraic relation (the so-called gain equation) 
replaces one of the chemical differential equations for the populations of state v’ 
and state v’ 2 1. Thus the system is described in terms of a set of equations in which 
the equations themselves change form in time. It is not known a priori which equations 
are applicable at a given time, and auxiliary tests are required in order to determine 
when changes occur in the equation system. 

An important parameter of the system is the “threshold gain,” whose value depends 
upon the reflectivity of the laser mirrors and the spacing between these mirrors. The 
larger the value of this threshold gain, the less the system is able to lase. For sufficiently 
high threshold gain, lasing is completely suppressed. In this case, the equations des- 
cribing the system become completely “chemical” in form, and consist entirely of 
coupled ordinary differential equations. The boundary condition on these equations 
are fixed by the initial chemical composition of the system, the initial pressure and 
temperature, and (importantly) by the number of fluorine atoms produced by the 
initiating flash-lamp discharge. 

The case of complete suppression of lasing action, which is usually termed the 
“zero-power” case, is therefore relatively simple to treat, and it is also of considerable 
interest. In particular, it is possible to study the timewise variation of the populations 
of the HF(v’) levels. From this information one can calculate the gains between 
adjacent levels and determine the times at which lasing would have been initiated had 
the threshold gain been adjusted to some specific value. 
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TABLE I 

Some Rate Coefficients of the HF Chemical Laser [9, 101 

lndex 

1 

2 
3 
7 

11 
14 
21 
23 
31 
39 
41 
54 
60 

Reaction 
-___ -- 

H+H+M,*HH,(O)+M? 
F,+M,~~F+F+M, 
HF(u)+M,*H+F+M, 
F + Ha(O) C HF(0) + H 
J=(4) + H z Ha(O) + F 
H + F, 2 HF(0) + F 
H,(l) + M, d H,(O) + M, 
HF(l) + M, z HF(0) + M, 
HF(l) + Me ti HF(0) + M, 
HFU) + M5 + HF(0) + M, 
=W) 2 HF(0) + HF(2) 
f=(l) + HF(2) z HF(0) + HF(3) 
HF(l) + HF(3) 2 HF(0) + HF(4) 

Rate Coefficient” 

1()18T-1.0 
5.0 x 10r3exp(-17765/T) 
1.2 x 10~0T-1~oexp(-68334/T) 
9.0 x 10*aexp(-805/T) 
1 .o x lO’%P~ 
6.0 x 10ra exp(- 1208/T) 
2.5 x lo-VP3 
9.0 x lo*Ps 
5.0 x 10T.3 + 1.0 x lO’?r-1.43 
1.3 x IO-YP.8 
4.0 x 10ST=. 
1.3 x 10a72.s 
6.0 x 10-zT3.9 

LI Nominal values; units: Tin degrees Kelvin, time in seconds, volume in cubic centimeters, mass 
in moles. The M,‘s denote catalytic species: M, = H, F, Ar, HF(O),..., HF(8); M, = 20*H, F, Ar, 
HF(O),..., HF(8), 2.5*H2(0), 2.5*H,(l), 2.5*Hz(2), Fz ; M, = F; M, = H, F, Ar, HF(0) ,..., HF(8), 
H,(O), H,(l), H,(2), Fz ; M, = H, Ar, H,(O), H,(l), H,(2), F, ; M, = HF(O),..., HF(8). Coefficients 
such as “20*” in the list of catalytic species indicate that the species concentration is weighted by 
this factor in computing the reaction rate. 

The model is characterized by a very large number of parameters, virtually all 
of which are known with poor precision. The most significant of these are the 68 
rate coefficients, one per reaction5 and the initial conditions of the systems.Preliminary 
study of the system suggests that only 13 of the 68 rate constants need be studied by 
sensitivity analysis, and that of the initial conditions, only the initial concentrations 
of F atoms need be studied. We therefore limited the sensitivity analysis to 14 para- 
meters of the system. 

The 13 rate constants which we used in our sensitivity analysis are detailed in 
Table I. The other rate constants were assumed to stand in certain fixed relations to 
those listed. The basis for this premise has been discussed by Cohen [13]. 

The rate coefficients listed in Table I are temperature dependent. Broadly speaking, 
the values in Table I are more reliable near 300°K (where they have been studied 
experimentally) than at higher temperatures, where numerical evaluation is based 
upon extrapolation of measurements beyond the range of experimental study. In 
principle, sensitivity analysis could study the separate influences of uncertainties 
in the absolute value of the rate coefficients at a fixed temperature within the experi- 

5 For each reaction there are IWO rate coefficients, one forward and one reverse. However, appeal 
to equilibrium considerations shows that only one of the two is independent, and that the uncer- 
tainty in one stands in a fixed relation to the uncertainty in the other. Thus, we can speak of there 
being one (independent) rate coefficient per reaction. 
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mental range (i.e., a preexponential or temperature-independent factor), and the 
influence of uncertainties in the temperature-dependent part of the rate constant 
(i.e., the activation energy). Such a separation into temperature-independent and 
temperature-dependent uncertainties was not undertaken [9]. Instead, at the 
suggestion of Cohen [14] the rate coefficients were assumed to be uncertain to 
within a multiplicative factor of 5, independent of temperature. At every temperature 
each rate coefficient ki was assumed to have a uniform probability distribution 
of its logarithm within bounds given by 

log kl”’ - log 5 -< log k< < log kp’ + log 5, (4.1) 

where ki”’ is the nominal value of ki , i.e., the value tabulated in Table I. We note in 
passing that for such a distribution, the transformation function Gj of Eq. (3.1) is 
given by 

Gi(x) = (2/n) Sin-lx, (4.2) 

where Sin-l is the principal value of the inverse sine function. 
The number of fluorine atoms produced at time t = 0 by flash-lamp discharge is 

similarly uncertain by about a factor of 2 [ 151, i.e., for this parameter log 5 is replaced 
by log 2 in Eq. (4.1). 

The differential equation system which describes the laser at zero power was 
programmed and run. Initial conditions of temperature and composition were as 
indicated in Table II. 

The laser model was integrated from zero time out to a real time of 4.0 psecs. 

TABLE II 

Initial Conditions for Laser Study’ 

Species 
Concentration 
(moles cm-“) 

- 
Ar (inert diluent) 4.704 x 10-5 
H,(O) 9.407 x IO-’ 
H,(l) 1.119 x IO-‘5 
HO) 4.321 x lo-= 
H 0.0 
HF(c’) (c’ z 0 to 8) 0.0 
F + 2F, 1.975 x 10-e 
F (nominal value)* 4.704 x 10-B 
F, (nominal value) 1.928 x 1O-6 

a Initial temperature 300°K. 
b Actual initial value ranges from -50 to 100 ‘A of tabulated value (see text). 
c Actual initial value dependent upon initial F atom concentration, such that sum F + 2F, is the 

tabulated value. 
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With 14 parameters it was necessary to carry out 907 such integrations.‘j Data on 
populations of vibrational states, chemical concentrations, temperature, and other 
variables were stored at each lOO-nsec real time interval. From the populations N(U) 
of adjacent vibrational levels of HF, it is simple to calculate the gains. The gain 
(~(0, J) for the transition HF (U + 1, J - 1) + HF (v, J) (J is the rotational quantum 
number of the lower vibrational state) is expressed by 

a(r, J) = 2 oc(r, J) $b(c, J) B(1: J) 1s N(ll t 1, J - I) - N(r.. J)(. (4.3) 

where h is Plan&s constant, NA is Avogadro’s number, w, is the wavenumber of the 
transition, I$(u, J) is the line profile at line center,’ B (u, J) is the Einstein coefficient 
for absorption, and N(u, J) is the population of the U, J rotation-vibration level of HF. 
The assumption of thermal equilibrium of the rotational states implies that N(u, J) 
satisfies 

N(u, J) = N(v)(2J + 1) exp(--hcEJ”/kT)/Q,v(7’), (4.4) 

where k is Boltzmann’s constant, T is the absolute temperature (assumed the same 
for rotation and translation), E,” is the rotational energy of the U, J level relative to 
the u, 0 level, and Ql.“(T) is the rotational partition function: 

Q,“(T) = x (25 i- 1) exp(-kcE’“/kT). 
J 

(4.5) 

In evaluating the gain as a function of time it is necessary to search over the rotational 
quantum number J to find that J value which maximizes o((u, .I) as a function of time. 
The reason for this is that only one such level can lase at any given time within each 
vibrational band, and it is the level for which ol(u, J) is maximum that actually lases. 
This J value can shift in time. The search procedure is simple and straightforward. 

We will describe the results of the sensitivity analysis for the u == 2 --t 1 1 c = 3 ---f 2, 
and u = 4 -+ 3 bands. The report by Levine [9] analyzed many other variables in 
addition to these three, and the reader can refer to this report for additional discussion. 
The three variables we will describe here suffice to illustrate the technique of applica- 
tion of sensitivity analysis. 

Figure 4 shows the zero-power gain as a function of time for the c =:: 2 + 1, 
v = 3 + 2, and u = 4 4 3 transitions. Both the nominal values and the mean values 
(averaged over the distribution of all parameters) are shown. Except at times less 
than 1 psec following initiation, the mean and nominal values differ considerably, 
both for the u = 2 ---f 1 and the u = 3 -j 2 transition. For the u = 4 ---f 3 transition, 
the mean and nominal values are not in good agreement even at times as short as 
0.2 psec. From this we can infer that the variance of these transitions will be large, 
which is confirmed in Fig. 5, where we plot the coefficients of variation. From these 

B This is based on the rule N = 2w,,, - 7 mentioned previously, in Section 3, and not on the 
rule N = 2w,,, + I. 

’ The Doppler profile was assumed in the model. 
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TIME (.psec) 

FIG. 4. Zero-power gains versus time for the t’ = 2 +1,~1=3+2,anda=4-+3vibrational 
transitions of HF. Curves show the time histories for both the nominal parameter values and the 
statistical mean value (averaged over the parameter uncertainties). 

two figures we see that the predictive ability of the model is poor as a consequence of 
the parameter uncertainties. The question as to which parameter uncertainties cause 
this high variance is answered graphically in Fig. 6,7, and 8. These three figures display 
the partial variances for the u = 2 ---f 1, v = 3 ---f 2, and v = 4 + 3 gains, respectively.s 

Reference to Fig. 6 shows that for the ZI = 2 --z 1 transition the variance at early 
times is due mainly to uncertainties in the initial F atom concentration [F10 and 
the rate coefficient for process F + H,(O) s HF(0) + H. Since the coefficients for the 
process F + Hz(O) 7t HF(v) + H (v = 1, 2, 3) are proportional to this rate (cf. Refs. 
[9, 14]), this is equivalent to stating that calculation of the gain at early times is 
sensitive to the rates at which reaction of F with H,(O) populates the excited levels, 
as we should anticipate. 

* The curves only show those partial variances which are large. Parameters whose partial variances 
are negligible are not shown, so as to avoid cluttering the figures. 
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TIME (psec) 

FIG. 5. Coefficients of variation of the gains on v = 2 - 1, L’ = 3 --f 2, and c = 4 4 3 vibra- 
tional transitions of HF, as functions of time. 

At longer times the sensitivity coefficient for the collisional deactivation process 
HF(v) + HF(u’) * HF(u - 1) + HF(v’) becomes the dominant cause for uncertainty 
in the computed values of the gains. At still longer times the uncertainties in the rate 
coefficient for the process H + F, G? HF(0) + F, and in the initial concentration 
of F atoms, become the dominant sources of uncertainty. The reason for the impor- 
tance of the latter parameter at late times is related to the fact that the laser at zero 
power operates adiabatically [9]. The reason for the importance of the former para- 
meter at late times is that the collection of reactions H + F, z HF(u) + F tends to 
repopulate the excited levels HF(u) (v 3 1) following their initial depopulation. The 
rate coefficients for this process with v > 1 are taken to be proportional to the rate 
coefficient for this process with v = 0 cf., Refs. [9, 131). 

Reference to Fig. 7 shows that the variance in the computed zero-power gain at 
the u = 3 + 2 transition is due to substantially the same reasons as in the case z, = 
2 + 1, with small additional influences. The latter correspond to the process HF(u) + 
H z F + H,(O) (u = 4, 5, 6) and 2HF( v z HF(o - 1) + HF(u + 1). The former ) 
process, while it does not directly involve the states HF(2) and HF(3), nonetheless 
influences these states indirectly, since, e.g., removal of molecules from HF(4) by 
collision with H eliminates molecules in HF(4) as a source of molecules in HF(3) via 
the process HF(4) c HF(u) s HF(3) + HF(u). 
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0.8 

I 2 3 
TIME (psec) 

FIG. 6. Partial variances for the zero-power gain of the v = 2 -+ 1 band of HF. Curves are 
labeled by the rate coefficients to which they correspond; [F], curve is partial variance due to un- 
certainty in initial F atom concentration. 

Reference to Fig. 8 shows a feature unique to the zero-power gain on the u = 4 * 3 
transition. The process HF(u) + H z H,(O) + F (V = 4, 5, 6) is the dominant cause 
of variance in the computed gain at times beyond 1.0 psec. Furthermore, as can be 
seen in Fig. 5, the variance for the gain on this transition is larger than that for the 
other transitions. It is striking also to note that the computed gain on this transition 
is very small (see Fig. 4), a fact which can be related to a very low population for the 
u = 4 level [9, lo]. It thus becomes possible to suggest, as a consequence of the 
sensitivity analysis, that the anomalously small computed gain on the v = 4 -+ 3 
transition may be due to too large a nominal value for the rate coefficient of the 
process HF(4) + H z H,(O) + F. For further discussion of this point, we refer the 
reader to the report by Levine [9]. 

In concluding this example, it is worth noting that the results of the sensitivity 
analysis show that the predictions of the model are sensitive only to 5 of the 14 

581/26/1-3 
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TIME (psec) 

FIG. 7. Partial variances for the zero-power gain of the v = 3 -+ 2 band of HF. Curves are 
labeled by the rate coefficients to which they correspond; [F], curve is partial variance due to uncer- 
tainty in initial F atom concentration. 

parameters studied. Thus we find that the large uncertainties in the remaining 9 
parameters do not influence the predictions. In view of this, we can conclude that for 
ali practical purposes those processes for which the sensitivity coeficient is small can 
be omittedfrom the model entirely. That is to say, a simplifiedjive-reaction model would 
sufice to describe the HF laser at zero power. 

B. A Chemical Reaction Model 

In a recent paper [16], Boni and Penner have successfully applied our method of 
sensitivity analysis to a study of methane oxidation kinetics. Their model consisted of a 
set of 23 coupled rate equations involving 23 parameters, i.e., rate coefficients. These 
parameters were varied over a hIsO% range of uncertainty about their nominal 
values /cd”. The output functions were the species concentrations (CH, , CH, , CH,O, 
CHO, CO, CO,, HzO, 0, H, OH) at different times (lo-’ to 10-a set) after the initiation 
of the reaction. Their analysis showed “that of the 23 reactions, plus their inverses, 
included in the mechanisms, only about 5-7 reactions (depending upon the species 
in question) strongly affect the concentration of that species.” Their analysis thus 
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FIG. 8. Partial variances for the zero-power gain of the u = 4 4 3 band of HF. Curves are 
labeled by the rate coefficient to which they correspond; [FJO curve is partial variance due to uncer- 
tainty in initial F atom concentration. 

provides an important example of how sensitivity analysis can be used to simplify 
complex models by segregating the “important” and “unimportant” component 
equations. 

C. An Economic Model 

Levine [6] has generalized a linear programming [7] model of petroleum refining 
economics, due to Wilde and Beightler [8], so as to apply it to the economics of 
national petroleum utilization. He has applied sensitivity analyses to the model so as 
to determine which economic parameters most influence petroleum utilization. 
Limitations of space preclude discussion here, but we do note that sensitivity analysis 
uncovers some highly unexpected nonlinear influences in a nominally linear system. 
We refer the reader to a report [6] which discusses this further. 

5. ADDITIONAL RESEARCH 

There are a number of interesting and important problems which have arisen during 
the course of this research and to which we have not had an opportunity to address 
ourselves. We list them here briefly and hope that some of the readers of this review 
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and future practitioners of this method will be stimulated to carry out some work 
along these lines. 

A. Postponement of Interferences 

In Sections 2E and 2F above and in Appendix 1, we have discussed the problem 
of interference which arises from the unavoidable use of a set of integer or rational 
frequencies. This etrect can be “postponed” in the sense that we can choose a high 
value of M (see Eq. (Ai.4)), the order of interference. As pointed out in Refs. [l-3], 
however, the larger the chosen value of M, the larger the maximum value urnal of 
the input frequencies set (w> and correspondingly, the larger the number N of s-space 
points required for the evaluation of the Fourier amplitude. Thus, a large value of M, 
which will minimize the interferences, will appreciably increase the number of compu- 
tations required for the calculation of the Fourier amplitudes. As we have shown, for 
instance, in Ref. [3], 806 points in s-space are required for the calculation of the 
Fourier amplitudes &, for a lo-parameter system for M = 4, while 8520 points are 
required for the same system when M = 6.9 Since w max will of course increase with 
the number n of parameters ki, i = 1, 2 ,..., n, this problem becomes particularly 
serious for systems with a large number of parameters. 

One obvious way to circumvent this problem completely would be to use a set of 
incommensurate frequencies w. Since this is impossible on a computer, the next-best 
solution would be to learn how to construct integer frequency sets {w} which will lead 
to large values of M for reasonable values of urnax . It is not clear how much of an 
improvement can be achieved on the frequency sets already published in our papers 
[l-3], but research along these lines is clearly desirable. 

In this connection, attention should be called to our brief discussion in Section 2F 
(see Eq. (2.20)) on the spacing of the N quadrature points used in the calculation of 
the Fourier coefficients. It maywell be possible to increase the accuracy of thecomputed 
Fourier coefficients by a more judicious choice of spacing which takes account of the 
oscillatory properties of the output function f(s). Some work on this problem could 
be very useful. 

B. Expansion of Output Function f 

We have chosen in the work done so far to transform the output functions, f, 
into periodic functions on (0, 27r) (see Eq. (2.7)) and then Fourier analyze these 
functions to obtain their Fourier coefficients. Interestingly, there is nothing sacrosanct 
in expanding f in terms of sine and cosine functions. One could equally well expand 
f(u), the output function in u-space, in terms of any other desired or useful set of 
orthogonal functions, such as, for instance, Hermite polynomials. One would then 
have to establish again the connection between the expansion coefficients and some 
“sensitivity measure” as has been done above. It is not clear whether such expansions 

9 Owing to the symmetry properties off(s) discussed in Section 3B, the number of sample points 
required is only one-half of the number listed here. 
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in terms of other orthogonal functions would lead to a simpler or better (or worse) 
theory of nonlinear sensitivity analysis, but it raises a question which could usefully 
be pursued. 

C. Information in Harmonics and Combination Frequencies 

As discussed in the previous sections, the Fourier spectrum of the output function 
contains harmonics and linear combinations of all the input frequencies wI , I = 1, 
2,..., n. In our earlier version of sensitivity analysis [l-3], we have used only the 
information contained in the fundamentals w1 through the Fourier amplitudes &, 
(Eq. (2.30)). In the partial variance method outlined above we have made use also 
of the harmonics of the fundamental frequencies for the construction of SW, as in 
Eq. (2.26). As pointed out in that section (Eqs. (2.27) through (2.29)), it is also possible 
to construct higher partial variances SW,,+, SwZ,,,,w, , etc., corresponding to linear 
combinations of the fundamental frequencies wI , wli , wj , etc. These higher partial 
variances contain increasingly more detailed information about the coupling of 
sensitivity due to uncertainties of groups of parameters. Such information is clearly 
of great importance in studying the sensitivity of chemical and other complex rate 
systems since the explicit rate laws for the output functions, if they could be obtained, 
would most probably involve sums and products of various parameters. It would 
therefore be most useful to explore the construction of higher partial variances and 
analyze the information obtained from them in future applications of the Fourier 
method of sensitivity analysis. 

D. Correlated Purumeters 

In all the work described so far we have made the explicit assumption that the 
system parameters kl and their variation u1 over any desired range are uncorrelated. 
By this we mean that each parameter can be varied independently of all other para- 
meter or, equivalently, that to each parameter one can assign a range of uncertainty 
with its probability distribution independent of the uncertainty range assigned to all 
other parameters. This is certainly valid for many physical systems where the para- 
meters are indeed independent of one another and can be determined, theoretically 
or experimentally, independently of one another. 

In many economic and social model systems there are, however, correlations 
between the parameters. Frequently it is not even possible to define parameters which 
are independent. The determinations of parameters in such systems by fitting models 
to repeated observations lead to a set of parameters which are statistically dependent; 
i.e., the range of uncertainty of parameter ki may well be correlated with the uncer- 
tainty range of parameters kj , k, , etc. 

To take proper account of such correlated parameters one needs to modify the 
Fourier amplitude sensitivity method analysis. One way of doing this is to incorporate 
the concept of correlated parameters into the formulation of the sensitivity analysis 
theory from the outset. This means that one cannot use the ansutz (2.3) according 
to which the probability density P(u) is written as the product of the P(u,). We have 
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not pursued this approach, and it is not clear what forms our theory will take when 
this simplifying assumption does not hold. Research on this problem is clearly of 
interest. 

APPENDIX I 

The error E in approximating an integral over e-space by a line integral over the 
search curve, for the Fourier coefficients of frequencies pwz (p = 1, 2,...) is represented 
by the difference 

(j(s) einoJ~S) - (f(e) eiasz) = c(f(e) eiveL>. (Al.l) 

Here, E is given by the sum 

E = 1’ cjqr * w - p&lJJ, (A1.2) 

where the prime on the summation excludes the c,,...~~...~ term, i.e., the rl = r2 = ... = 
rl-l = yzil = ... r, z 0, rz = p1 Fourier coefficient. The Kronecker delta is defined as 

6(r * 0) = 1 for r . w = 0, 
(A1.3) 

= 0 for r * w # 0. 

This result is obtained by using the definition (Eq. (2.14) off(e) as a multiple Fourier 
series in the 19,‘s in Eq. (Al. 1). As can be seen from Eq. (Al .2), each time r . w = plwc , 
one obtains a contribution to the error E made in equating the s- and f&space integra- 
tions. We refer to the values of r which satisfy xi riwi = pCwE as interferences. The 
weight of the error is just the Fourier coefficient c, evaluated at the value of r for which 
r . w = plwl . Since Fourier coefficients tend to decrease in magnitude as their index r 
increases, we see that postponing the occurrence of interferences to higher values of r 
will lead to a smaller error E. 

It is convenient to define Ml , the order of an interference such that r . w f ptwl for 

(A 1.4) 

The higher the order of interference, the smaller the error E for a given output function. 
The values of p which lead to interferences are controlled by the choice of frequencies 

w. Thus, a “judicious” choice of o leads to error terms which are small. By way of 
illustration we return to the two-dimensional frequency choices given in Eqs. (2.12). 
Let us say that we are interested in the Fourier coefficient CzUl and thus pl = 2. For 
the first choice (wl = 1, w? = 2), the lowest interference arises when say pI = 2, 
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pz = -1 so, with reference to Eq. (Al .4), M, = 1. This choice of frequencies leads 
to a poor coverage of e-space and therefore a large error in equating s- and B-space 
integrals. The second frequency choice, w1 = 11, w2 = 13, leads to an interference 
when p1 = 13 and pz = - 11 so that MI = 22. The e-space coverage is much im- 
proved and we obtain a more accurate value for the e-space integration. By choosing 
frequencies which are increasingly incommensurate as measured by an increasing 
value of the order of interference one has, as M, -+ co, the strict equality of s- and 
e-space integration. 

APPENDIX 2 

The results of Appendix 1 must be modified to account for the use of a finite 
number of points N that are used to carry out the s-space integration. The difference 
between the s-space quadrature and the e-space average can be written as 

C* * 
VW1 - c,, = E c,, , (A2.1) 

where here E* is found to be (see Ref. [3]) 

E* = z 1’ c,S(r . w - plwl - jN). 
j=-cc r 

(A2.2) 

As in Eq. (A1.2), the prime on the summation excludes the coefficient c, = c,, from 
the summations over ri (i = 1,2,..., n). The error E* now includes contributions when 
r satisfies 

r * w -pplwl = jN; j = &I, &2,.... (A2.3) 

That is, in addition to the interference errors (those arising for j = 0), each time an 
integer multiple of N, the number of points in the quadrature, equals the frequency 
r. * -~+b, an additional error, whose size is given by the #-space Fourier coefficient 
of that frequency, also occurs. We term these contributions to the error as aliases. 
The aliasing phenomena, which arise from the finite number of points used to numeri- 
cally evaluate the Fourier coefficients, can also be controlled by appropriate choice 
of o and N. Postponing the aliasing to values of c, with r larger and larger will yield 
a more accurate Fourier coefficient approximant C&, . As for interferences, we 
define the order of an alias M, such that r . w # plwl + jN (j = &l, f2,...) for 

Postponing the occurrence of aliasing by appropriate choices of w and N which lead 
to a large value of Mz decreases the error due to aliasing. For further details see 
Ref. [3]. 



38 CUKIER, LEVINE, AND SHULER 

APPENDIX 3 

In the numerical computation of the Fourier coefficients, an N-point approximation 
to the u-space integration is used. In order to assess our approximations, we have 
constructed upper bounds on the error made for given w, N sets and classes of output 
functions to be analyzed. We have described this error analysis in some detail in 
Ref. [3] and here will only sketch its features and adopt them to the new approach 
to sensitivity analysis developed in this work. 

The error made in the numerical evaluation of the Fourier coefficients is just the 
difference between the N-point quadrature formula and the integral over all u-space. 
For, if we could use a space-filling search curve in u-space, Weyl’s theorem would 
be exact and the Fourier coefficient evaluation would be exact. Thus, we define the 
error Ll, as 

where gI(0) = f(e)@, 8, = (e,, , Bza ,..., e,,), and 8j, = wjs, with j = 1, 2 ,..., n. 
We now construct an upper bound A yp to the error A, which is a function of w, 
N and the output function to be evaluated. Note that g@) is multiply periodic in 0, 
and if the partial derivatives 

are of bounded variation, then the Fourier coefficients b, of gr(e) defined by 

g(e) = 1 breir.e 

satisfy 

br < a, fi rTj 
I I -’ j=l 

(A3.3) 

(A3.4) 

with LYE independent of r and rf = max(1, 1 rj I). The equality of Eq. (A3.4) provides 
the Fourier coefficients bfup for the construction of A sUP. That is, since gr(0) is multiply 
periodic in 8, we use its multiple Fourier expansion in A, and obtain 

with 

A, < Ay (A3.5) 

A SUP = C’ ‘2 by’ 6(r . w - jlv>. 
7 j=-, 

(A3.6) 

One can readily construct the function gsuP(e) whose Fourier coefficients are bpp 
and, with Eq. (A3.1), find AFP in terms of w, N and the properties of the output 
functions to be considered. The description of the output function is given by the 



NONLINEAR SENSITIVITY ANALYSIS 39 

boundedness of its partial derivatives as described by the value of p* in Eq. (A3.2). 
In this fashion we have in Ref. [3] constructed bounds on the error for sets of w, N 
which we have used in numerical calculations. The most important conclusion to be 
drawn from the error analysis presented in Ref. (3) is that the Fourier coefficients 
can be calculated with good accuracy by judicious choice of N and the frequency 
set w and that comparison of Fourier coefficients with a “safety factor” of about one 
order of magnitude yields valid sensitivity measures. 

The bounds on the Fourier coefficients can readily be combined to yield bounds on 
the partial variances S, . Thus, the Fourier coefficient analysis is directly applicable 
to the partial variance;. It is important to note that as one examines the Fourier 
coefficients of higher harmonics of a fundamental, the accuracy with which they are 
approximated degenerates since one is using the same number and placement of 
points in a quadrature formula involving a function which is increasingly more 
oscillatory. However, the s-space Fourier coefficients themselves fall off in magnitude 
as one works with higher frequencies so that the Fourier coefficients for the higher 
frequencies do not have to be as precisely approximated as those for the lower 
frequencies. 

APPENDIX 4 

The part of the total variance uz arising from the uncertainty of the Ith parameter, 
when the output function is averaged over the uncertainties in all other parameters, is 
found by first integrating over all parameter uncertainties except for the Zth. This 
integration is best done in O-space, where one may use the multiple Fourier decomposi- 
tion of Eq. (2.14). Thus 

f(e,) = 1 de, - de, -1 de,,, - de,f(e, ,.... e,) 

= C c~~...~~...~~ exp[4&1. 
a1 

Now form the variance (~12 of f(O,) with respect to the uncertainty in kl : 

(A4.1) 

(A4.2) 

We have found before (cf. Eq. (2.18)) that the O-space Fourier coefficient c,,,,...~,.. .OOO 
equals the s-space coefficient CDUL so that u12 can also be written as 
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As before, we must 
define a7 to be 

modify this result to correspond to the finite summations. We 

2* = *z 
ZI=-IN/Z-l) ?I=1 

NOW form the quotient a:* arising from the Ith parameter and the total variance 0*2 
and call it SW*, , the partial variance 

s* _ zLV!?-1) I c&,, ;? 
“’ 1 zyli2(N/2-,) 1 ‘j* 1’ ’ 

This result is Eq. (2.25) of the text. 

(A4.5) 

APPENDIX 5 

We wish to establish the symmetry relations 

f($v + s) = f& - s), (A5.1) 

f( -+77- - s) = f( +r + s), (A5.2) 

of the output function f(s) for - 77/2 < s < 7rj2 and to see how these relations reduce 
the size of the discrete samples required along the closed search curve. 

To do so, we stipulate that the wi’s are odd integers and set wi = 2k + 1. Thus 

sin[(2k + l)s] = sin[(2k + 1)(77 - s)] = -sin[(2k + I)(97 + s)] 
= -sin[(2k + 1)(27r - s)]. (A5.3) 

Applying these identities to all the parameters, we establish 

and 

,f(77 - s) = f(sin ~~(77 - s), sin CLJ~(~T - s) ,...) 

= f(sin wrs, sin wp s,...) = j(s) 
(A5.4) 

f(7r + s) =f(-sin wls, -sin WAS,...) =f(27r - s). 

Since f(s) = f(s + 277) by construction, Eq. (A5.5) also implies 

(A5.5) 

f(--n + s> = f(s). (A5.6) 

Equation (A5.4) states that f(s) in the quadrant TT/~ < s < v is the mirror image 
about 7712 of f(s) in the quadrant 0 < s < 7~/2; Eq, (A5.6) states that f(s) in the 
quadrant -n < s < z-r/2 is the mirror image about -7r/2 of f(s) in the quadrant 
-42 <cs ,(o. 
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Thus we need only evaluate f(s) in the range -7r/2 <f(s) < 57/Z. This reduces 
the computational load by a factor of 2 relative to what was stated in Refs. [l-3]. 

APPENDIX 6 

The working equations of our sensitivity method yield the Fourier coefficients of 
Eqs. (3.13). Here we show how to obtain these equations by use of the symmetries 
of the output functionsf(s) in s (Eqs. (3.8)) and the symmetries of the trigonometric 
functions. 

The Fourier coefficients 

1 2r 
Aj* = r 1 .fq COS,jSq > 

q=1 

1 2r 
Bj* = ; 2 ,f, sin js, 

q=1 

(A6.1) 

can be written. using these symmetries, as sums over the half interval n/2 < S, <. n/2: 

Aj* zr ; ,,& Icos.iJ, + cos,is-,-nl.f* + ; y2 [COS.j.% f- cosjsrm,]~ ) (A6.2) 
II=1 

Bj” zz ; (A6.3) 

where we now define s, = n-q/r and set f(s,) = f, . 
Application of the addition theorems for trigonometric functions allows us to 

rewrite Eqs. (A6.2) and (A6.3) as 

Aj* = i [I -1 (-l)j]f” f (vmf’2 [,fj L,f-j] cos F, 
v=1 

(A6.4) 

(A6.5) 

Recalling that r = 2q + 1 we obtain Eqs. (3.13) given in Section 3. 
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